Logarithmic Bounds on Sobolev Norms for Time Dependent Linear Schrödinger Equations

نویسنده

  • W.-M. Wang
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds

We give a new proof of a theorem of Bourgain [4], asserting that solutions of linear Schrödinger equations on the torus, with smooth time dependent potential, have Sobolev norms growing at most like t when t→ +∞, for any > 0. Our proof extends to Schrödinger equations on other examples of compact riemannian manifolds.

متن کامل

Bound States of Two-dimensional Schrödinger-newton Equations

We prove an existence and uniqueness result for ground states and for purely angular excitations of two-dimensional Schrödinger-Newton equations. From the minimization problem for ground states we obtain a sharp version of a logarithmic Hardy-Littlewood-Sobolev type inequality.

متن کامل

Spectral Gap, Logarithmic Sobolev Constant, and Geometric Bounds

– We survey recent works on the connection between spectral gap and logarithmic Sobolev constants, and exponential integrability of Lipschitz functions. In particular, tools from measure concentration are used to describe bounds on the diameter of a (compact) Riemannian manifold and of Markov chains in terms of the first eigenvalue of the Laplacian and the logarithmic Sobolev constant. We exami...

متن کامل

Logarithmic Norms and Nonlinear DAE Stability

Logarithmic norms are often used to estimate stability and perturbation bounds in linear ODEs. Extensions to other classes of problems such as nonlinear dynamics, DAEs and PDEs require careful modifications of the logarithmic norm. With a conceptual focus, we combine the extension to nonlinear ODEs [15] with that of matrix pencils [10] in order to treat nonlinear DAEs with a view to cover certa...

متن کامل

Metaplectic Representation on Wiener Amalgam Spaces and Applications to the Schrödinger Equation

We study the action of metaplectic operators on Wiener amalgam spaces, giving upper bounds for their norms. As an application, we obtain new fixed-time estimates in these spaces for Schrödinger equations with general quadratic Hamiltonians and Strichartz estimates for the Schrödinger equation with potentials V (x) = ±|x|.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008