Logarithmic Bounds on Sobolev Norms for Time Dependent Linear Schrödinger Equations
نویسنده
چکیده
منابع مشابه
Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds
We give a new proof of a theorem of Bourgain [4], asserting that solutions of linear Schrödinger equations on the torus, with smooth time dependent potential, have Sobolev norms growing at most like t when t→ +∞, for any > 0. Our proof extends to Schrödinger equations on other examples of compact riemannian manifolds.
متن کاملBound States of Two-dimensional Schrödinger-newton Equations
We prove an existence and uniqueness result for ground states and for purely angular excitations of two-dimensional Schrödinger-Newton equations. From the minimization problem for ground states we obtain a sharp version of a logarithmic Hardy-Littlewood-Sobolev type inequality.
متن کاملSpectral Gap, Logarithmic Sobolev Constant, and Geometric Bounds
– We survey recent works on the connection between spectral gap and logarithmic Sobolev constants, and exponential integrability of Lipschitz functions. In particular, tools from measure concentration are used to describe bounds on the diameter of a (compact) Riemannian manifold and of Markov chains in terms of the first eigenvalue of the Laplacian and the logarithmic Sobolev constant. We exami...
متن کاملLogarithmic Norms and Nonlinear DAE Stability
Logarithmic norms are often used to estimate stability and perturbation bounds in linear ODEs. Extensions to other classes of problems such as nonlinear dynamics, DAEs and PDEs require careful modifications of the logarithmic norm. With a conceptual focus, we combine the extension to nonlinear ODEs [15] with that of matrix pencils [10] in order to treat nonlinear DAEs with a view to cover certa...
متن کاملMetaplectic Representation on Wiener Amalgam Spaces and Applications to the Schrödinger Equation
We study the action of metaplectic operators on Wiener amalgam spaces, giving upper bounds for their norms. As an application, we obtain new fixed-time estimates in these spaces for Schrödinger equations with general quadratic Hamiltonians and Strichartz estimates for the Schrödinger equation with potentials V (x) = ±|x|.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008